
Preparedness and Public Health Systems Research: Examples from H1N1 and Beyond

Glen P. Mays, PhD
Department of Health Policy and Management
Fay W. Boozman College of Public Health
University of Arkansas for Medical Sciences

Agenda

- Review conceptual and methodological issues faced in studying public health system preparedness
- Examine examples of recent and current preparedness studies
- Discuss implications for ongoing and planned PBRN studies

I. Concepts and Frameworks

Fundamental empirical questions

- Which programs, interventions, policies (mechanisms)....
- Work best (outcomes)...
- In which institutional & community settings (contexts)...
- And why (causal pathways, interactions)?

Challenges in research on preparedness

- Thin evidence on preparedness mechanisms, "practices"
- Emergency events/outcomes are variable & rare
- Highly variable institutional and community contexts
- Measurement issues abound
 - Few established/validated measures of mechanisms
 - Measuring before, during, after events

Conceptualizing and Defining Public Health Emergency Preparedness

Nelson, Lurie, and Wasserman AJPH 2007 Preplanned and coordinated rapid-response capability

- Health risk assessment. Identify the hazards and vulnerabilities (e.g., community health assessment, populations at risk, high-hazard industries, physical structures of importance) that will form the basis of planning.
- Legal climate. Identify and address issues concerning legal authority and liability barriers to effectively monitor, prevent, or respond to a public health emergency.
- Roles and responsibilities. Clearly define, assign, and test responsibilities in all sectors, at all levels of government, and with all individuals and ensure each group's integration.
- Incident Command System. Develop, test, and improve decisionmaking and response capability using an integrated Incident Command System (ICS) at all response levels.
- Public engagement. Educate, engage, and mobilize the public to be full and active participants in public health emergency preparedness.
- 6. Epidemiology functions. Maintain and improve the systems to monitor, detect, and investigate potential hazards, particularly those that are environmental, radiological, toxic, or infectious.
- 7. Laboratory functions. Maintain and improve the systems to test for potential hazards, particularly those that are environmental, radiological, toxic, or infectious.
- Countermeasures and mitigation strategies. Develop, test, and improve community mitigation strategies (e.g., isolation and quarantine, social distancing) and countermeasure distribution strategies when appropriate.
- 9. Mass health care. Develop, test, and improve the capability to provide mass health care services.
- 10. Public information and communication. Develop, practice, and improve the capability to rapidly provide accurate and credible information to the public in culturally appropriate ways.
- 11. Robust supply chain. Identify critical resources for public health emergency response and practice and improve the ability to deliver these resources throughout the supply chain. Expert and fully staffed workforce
 - Operations-ready workers and volunteers. Develop and maintain a public health and health care
 workforce that has the skills and capabilities to perform optimally in a public health emergency.
 - Leadership. Train, recruit, and develop public health leaders (e.g., to mobilize resources, engage the community, develop interagency relationships, communicate with the public).

Accountability and quality improvement

- Testing operational capabilities. Practice, review, report on, and improve public health emergency preparedness by regularly using real public health events, supplemented with drills and exercises when appropriate.
- 2. Performance management. Implement a performance management and accountability system.
- Financial tracking. Develop, test, and improve charge capture, accounting, and other financial systems to track resources and ensure adequate and timely reimbursement.

Related concepts from health care performance measurement

- Safe: Avoid errors and injuries from care that is intended to help
- Effective: Match care to evidence; avoid overuse of ineffective care and underuse of effective care
- Patient-Centered: Honor and engage the individual and respect choice
- Timely: Deliver care at the right time for optimal effectiveness
- Efficient: Reduce waste
- Equitable: Close racial and ethnic gaps in receipt of care

Applying concepts to public health preparedness

To what extent does the PH system:

- Do the "right" things
 - Effective, evidence-based practices
 - Community-centered, culturally competent
 - Safety for communities and responders
- For the "right" people
 - Reach to the population at risk
 - Equity in who is reached
- At the "right" times
 - Structures, plans, staff, exercises in place pre-event
 - Timely response during event
 - Recovery, evaluation, QI after event
- At an "acceptable" cost (efficiency)
 - Direct financial cost
 - Opportunity cost what else gets discontinued or delayed

Applying concepts to public health preparedness

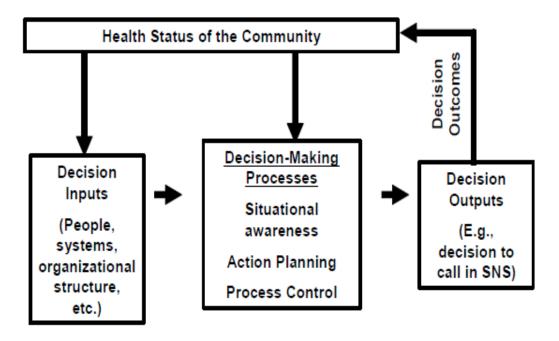


Figure 2.1
Public Health Emergency Decisionmaking as a Production Flow

Parker AM, Nelson C et al. Measuring crisis decision-making in public health emergencies. RAND Working Paper WR-577-DHHS. 2009.

II. Measurement Approaches
Prospective
Concurrent
Retrospective

A Review of Instruments Assessing Public Health Preparedness

Assessment^a Essential Public Health Service 10 | 11 #1 Monitor health problems to identify and solve community health problems Disease reporting: complete Timely Compliance Syndromic surveillance Capacity to receive/analyze data Facility hazard assessment #2 Diagnose and investigate health problems and health hazards in the community Information system capacity: Health alert network 24-hour/7-day capacity Active surveillance Epidemiologic capacity Laboratory capacity #3 Inform, educate, and empower people about health issues Reports on community health Information Officer Contact list Preprinted materials Website Risk communication protocol

STEVEN M. ASCH, MD, MPH^{a,c,d}
MICHAEL STOTO, PHD^{a,b}
MARC MENDES, MD, MPH^{c,d}
R. BURCIAGA VALDEZ, PHD^a
MEGHAN E. GALLAGHER, BA^a
PAUL HALVERSON, DRPH, MPH^c
NICOLE LURIE, MD, MSPH^{a,b}

Public Health Reports / September-October 2005 / Volume 120

Public Health Emergency Preparedness at the Local Level: Results of a National

Variable (n)	Population Size (n) Categories: (1) < 25,000 (2) 25,000−49,999 (3) 50,000−199,999 (4) ≥ 200,000	p Value	Presence of a Board of Health (n) Univariate ORs and ORs Adjusted for Population Size	p Value	Participation in Coalitions (n) Univariate ORs and ORs Adjusted for Population Size	p Value
EP-Staff ($n = 1,794$)	2.7% (22) 7.1% (41) 20.0% (58) 58.3% (74)	<.0001	Proportions Yes 9.4% (131) No 15.7% (64) ORs (95% CI) Univariate: 0.56 (0.42, 0.75) Adjusted: 0.76 (0.54, 1.08)	.0001	Proportions Yes 17.7% (40) No 16.8% (20) ORs (95% CI) Univariate: 1.06 (0.60, 1.88) Adjusted: 0.89 (0.46, 1.74)	.8293
EP-Capacities $(n = 2,255)$	12.9% (139) 17.2% (119) 30.0% (103) 49.8% (70)	<.0001	Proportions Yes 19.0% (326) No 19.9% (106) ORs (95% CI) Univariate: 0.94 (0.74, 1.20) Adjusted: 1.05 (0.81, 1.34)	.6357	Proportions Yes 27.8% (73) No 19.1% (30) ORs (95% CI) Univariate: 1.63 (0.98, 2.72) Adjusted: 1.46 (0.86, 2.47)	.0582
EP-Activities $(n = 2,292)$	58.6% (644) 76.4% (537) 86.1% (301) 92.0% (130)	<.0001	Proportions Yes 73.3% (1,279) No 61.5% (337) ORs (95% CI) Univariate: 1.17 (1.37, 2.13) Adjusted: 1.86 (1.48, 2.36)	<.0001	Proportions Yes 85.8% (227) No 53.9% (85) ORs (95% CI) Univariate: 5.19 (3.03, 8.87) Adjusted: 5.03 (2.85, 8.90)	<.0001
EP-Performance ($n = 423$)	29.0% (44) 32.6% (43)	<.0001	Proportions Yes 40.3% (130)	.9275	Proportions Yes 59.4% (157)	<.0001

Savoia E, Rodday AM, Stoto MA. Health Services Research 2009

Some new work in progress through CDC's NC-PERRC

- Validation of a new instrument for studying variation in preparedness capacities across communities and over time
- Draws on best-performing items from existing instruments
- Testing multiple respondents within the agency and community
- Validation: Summer-Fall 2009
- First wave of implementation: Spring 2010

Measuring preparedness concurrently

Local Variation In Public Health Preparedness: Lessons From California

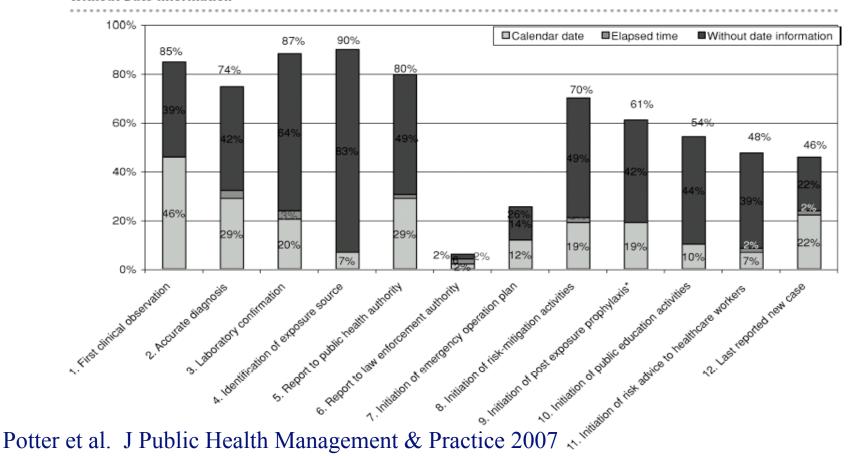
Byen in California—one of the best-prepared states—much work remains to ensure preparedness for a public health emergency.

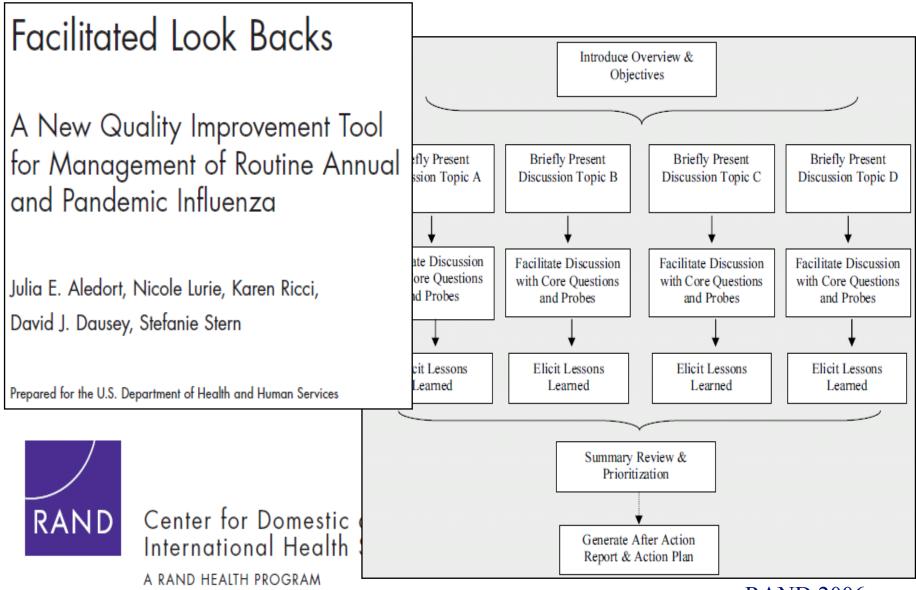
by Nicole Lurie, Jeffrey Wasserman, Michael Stoto, Sarah Myers, Poki Namkung, Jonathan Fielding, and Robert Burciaga Valdez

EXHIBIT 1

Characteristics Of Local Public Health Agencies (LPHAs) Participating In Test Of Response To Case Reports, 2004

LPHA	Region	Population served ^a	Urban/ rural ^b	Mean time until calls returned (minutes)	Longest period before calls returned (minutes)	Number of calls not returned	Percent "warm transfers"
1	Midwest	Small	Rural	93	630	2	44
2	Midwest	Medium	Rural	51	350	1	57
3	Midwest	Medium	Urban	4	6	0	88
4	Midwest	Large	Urban	14	30	0	50
5	Midwest	Large	Urban	10	23	0	38


- Existing information flows and documentation
 - Health Alert Network
 - Case reports
 - Electronic disease reporting systems
- Facilitated Look-backs
- After-action Report (AAR) reviews


Performance Indicators for Response to Selected

Infectious Disease Outbreaks: A Review of the

Published Record Margaret A. Potter, Patricia Sweeney, Angela D. Iuliano, and Michael P. Allswede

FIGURE 1 lacktriangle Percentage of Outbreak Reports (N = 59) Including Process Indicators by Calendar Date, by Elapsed Time, or Without Date Information

RAND 2006

AAR Review

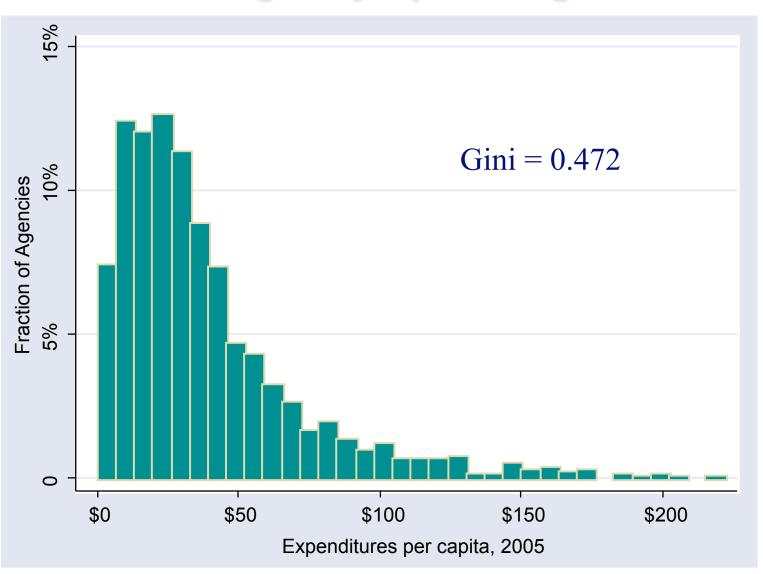
- Types of drills and exercises used
- Range of participating organizations
- Target capabilities and response activities tested
- Roles of public health agencies
- Types of recommendations and improvement plans

III. Analytical Considerations (Comparisons & Inferences)

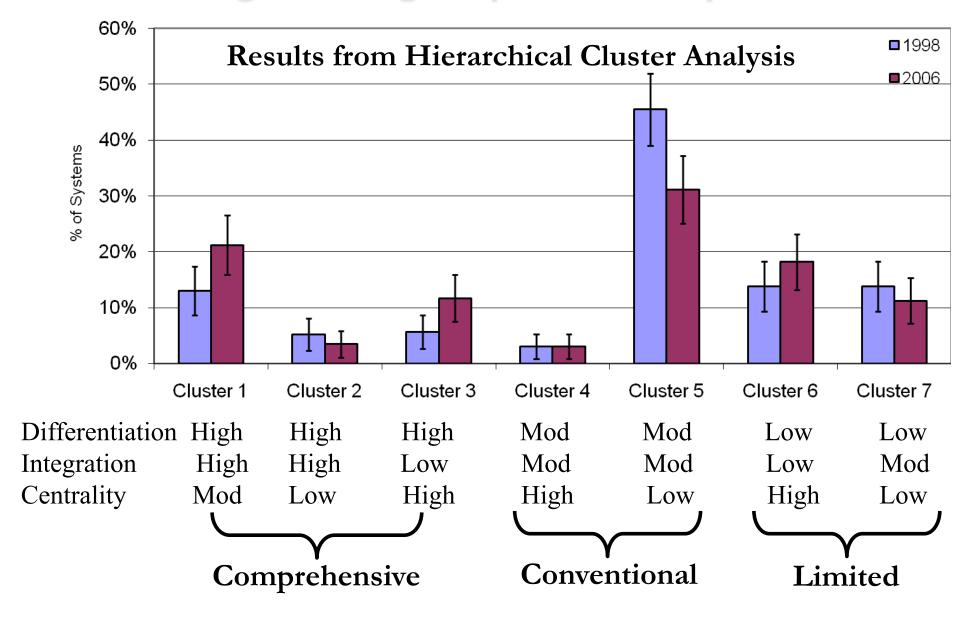
Analytical Considerations

- How to make meaningful comparisons across agencies and systems
 - Variation across settings
 - Change over time
- How to make valid inferences about Context-Mechanism-Outcome relationships

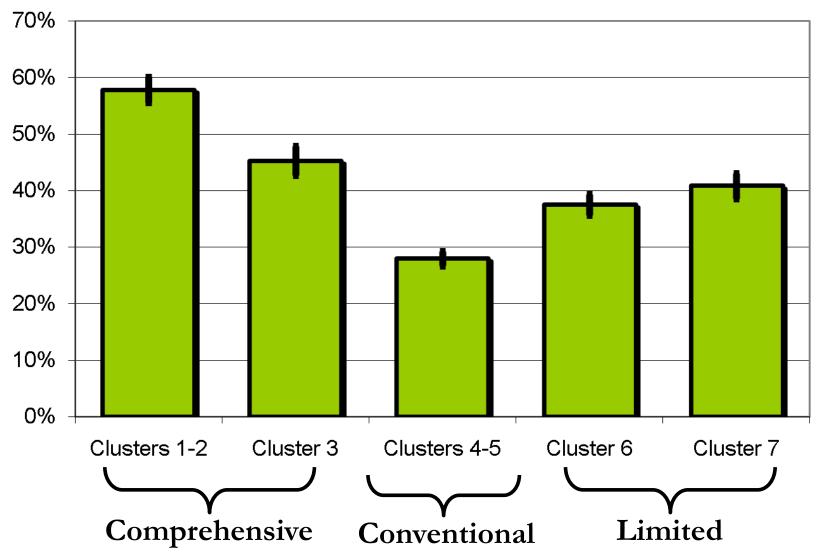
Challenge #1: heterogeneity in context


Demand-side:

- Nature and timing of the event
- Population health risks, vulnerabilities, social determinants
- Preferences, values, priorities
- Information

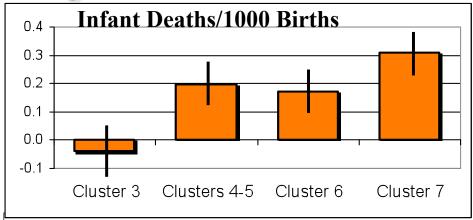

Supply-side

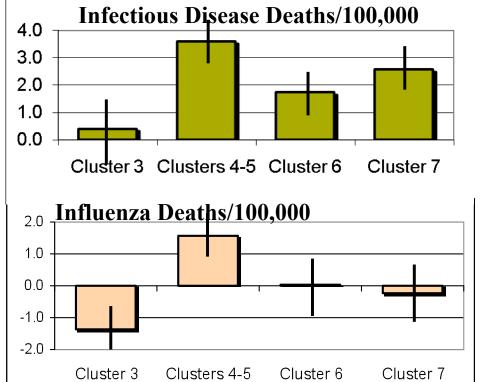
- Institutional & interorganizational structures
- Human capital
- Financing
- Law


Example: variation in local public health agency spending

Example: classifying systems into homogenous groups for comparison

Example: comparing self-rated practice effectiveness

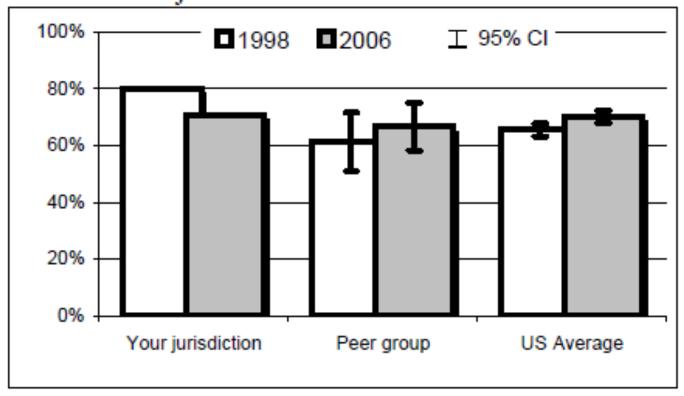



Regression-adjusted means control for population size, density, age composition, poverty status, racial composition, and physician supply

Example: Comparing health status

Fixed-effects Differences (Reference: Clusters 1-2)

- Conventional and limited systems have significantly higher mortality rates than that of comprehensive systems
- Differences persist after controlling for population demographics, SES, health resources, and community fixed effects



Comprehensive Conventional Limited

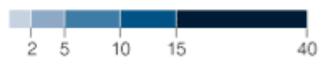
Example: constructing peer groups using Euclidean distance

- Identify "nearest neighbor" systems based on institutional and community characteristics
- Population size, density, racial/ethnic composition, SES, state/local division of authority

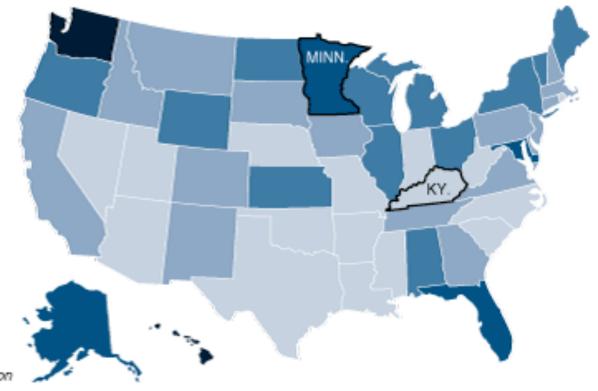
Figure 1: Proportion of Public Health Activities Available in the Jurisdiction

Challenge #2: heterogeneity in mechanisms

- Variations in practice
- Adoption of evidence-based programs and policies
- Fidelity in implementation & enforcement
- Reach to populations at risk
- Timeliness of response

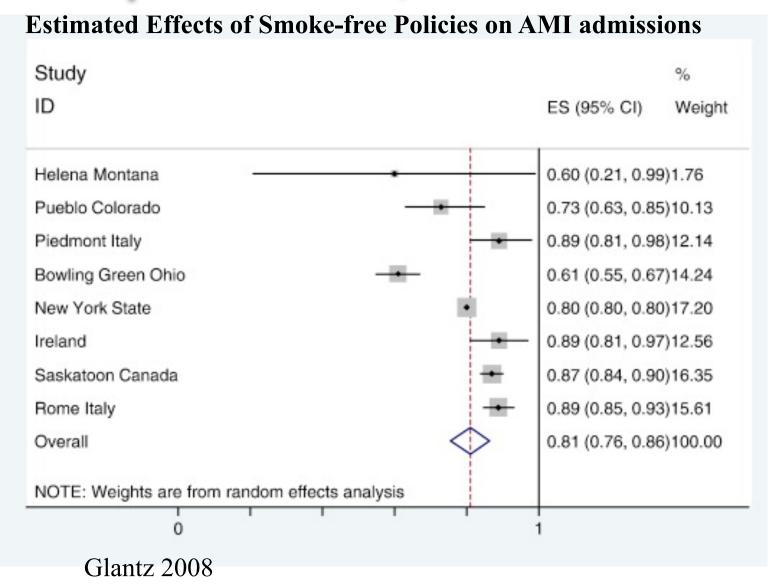

Example: variations in investigation practice

Mixed Results In Tracking Food Scares


Minnesota health officials investigate all reports of food-borne illness, but officials in many states do not. From 1990 to 2006, Minnesota reported 548 outbreaks, while Kentucky reported 18.

Reported outbreaks of food-related illness

Per 100,000 people, 1990 to 2006



Source: Centers for Disease Control and Prevention

Copyright 2009 The New York Times Company

Example: variations in policy design, implementation, enforcement

Analytic strategies for addressing heterogeneity in mechanisms

- Analyze the adoption & implementation processes
 - Extent of implementation
 - Degree of fidelity
 - Success in reaching target population (underuse, overuse, misuse)
 - Barriers and facilitators
- Structure comparisons around the type and/or extent of implementation
- Compare different approaches to implementation

Challenge #3: identifying appropriate outcomes

Problems

- Lagged effects
- Partial effects on multiple outcomes
- Heterogeneous effects on outcomes

Analytic strategies

- Composite outcome measures
- Latent variable analysis
- Process measures with empirical link to outcomes

Challenge #4: untangling the effects of context and mechanisms

- Contextual confounding
- Selection/endogeneity bias in mechanisms
- Interactions between context and mechanisms
- Interaction between multiple mechanisms
 - Economies of scope
 - Synergy
 - Competing/offsetting effects
- Highly correlated/indistiguishable mechanisms

Research design & analytical considerations

- Take advantage of natural experiments (exogenous change in context or mechanisms)
- Use statistical controls for observed and/or unobserved confounding
 - Propensity score methods
 - Instrumental variables methods
- Test for interaction effects between contexts and mechanisms
- Test "standardized" mechanisms in different institutional & community settings

Example: effects of accreditation on preparedness & performance

Effect =
$$(O_{post} - O_{pre}) - (C_{post} - C_{pre})$$

Practice-based research networks as vehicles for comparative studies

- Compare a standardized intervention in a variety of practice settings
- Compare variation in adoption and implementation across a variety of practice settings
- Examine multiple context-mechanism pathways that lead to outcomes of interest

Concluding thoughts

- PH system and services heterogeneity poses challenges to comparative research
- This heterogeneity also drives the need for comparative research – is the variation:
 - Wasteful
 - Harmful
 - Inequitable
- Threats to validity must be balanced against:
 - the consequences of error (type I)
 - the consequences of inaction (type II)