Preparedness and Public Health Systems Research: Examples from H1N1 and Beyond

Glen P. Mays, PhD
Department of Health Policy and Management
Fay W. Boozman College of Public Health
University of Arkansas for Medical Sciences
Agenda

- Review conceptual and methodological issues faced in studying public health system preparedness
- Examine examples of recent and current preparedness studies
- Discuss implications for ongoing and planned PBRN studies
I. Concepts and Frameworks
Fundamental empirical questions

- Which programs, interventions, policies (*mechanisms*)….
- Work best (*outcomes*)…
- In which institutional & community settings (*contexts*)…
- And why (*causal pathways, interactions*)?

Pawson and Tilley 1997
Challenges in research on preparedness

- Thin evidence on preparedness mechanisms, “practices”
- Emergency events/outcomes are variable & rare
- Highly variable institutional and community contexts
- Measurement issues abound
 - Few established/validated measures of mechanisms
 - Measuring before, during, after events
Preplanned and coordinated rapid-response capability
1. Health risk assessment. Identify the hazards and vulnerabilities (e.g., community health assessment, populations at risk, high-hazard industries, physical structures of importance) that will form the basis of planning.
2. Legal climate. Identify and address issues concerning legal authority and liability barriers to effectively monitor, prevent, or respond to a public health emergency.
3. Roles and responsibilities. Clearly define, assign, and test responsibilities in all sectors, at all levels of government, and with all individuals and ensure each group’s integration.
4. Incident Command System. Develop, test, and improve decisionmaking and response capability using an integrated Incident Command System (ICS) at all response levels.
5. Public engagement. Educate, engage, and mobilize the public to be full and active participants in public health emergency preparedness.
6. Epidemiology functions. Maintain and improve the systems to monitor, detect, and investigate potential hazards, particularly those that are environmental, radiological, toxic, or infectious.
7. Laboratory functions. Maintain and improve the systems to test for potential hazards, particularly those that are environmental, radiological, toxic, or infectious.
8. Countermeasures and mitigation strategies. Develop, test, and improve community mitigation strategies (e.g., isolation and quarantine, social distancing) and countermeasure distribution strategies when appropriate.
9. Mass health care. Develop, test, and improve the capability to provide mass health care services.
10. Public information and communication. Develop, practice, and improve the capability to rapidly provide accurate and credible information to the public in culturally appropriate ways.
11. Robust supply chain. Identify critical resources for public health emergency response and practice and improve the ability to deliver these resources throughout the supply chain.

Expert and fully staffed workforce
1. Operations-ready workers and volunteers. Develop and maintain a public health and health care workforce that has the skills and capabilities to perform optimally in a public health emergency.
2. Leadership. Train, recruit, and develop public health leaders (e.g., to mobilize resources, engage the community, develop interagency relationships, communicate with the public).

Accountability and quality improvement
1. Testing operational capabilities. Practice, review, report on, and improve public health emergency preparedness by regularly using real public health events, supplemented with drills and exercises when appropriate.
2. Performance management. Implement a performance management and accountability system.
3. Financial tracking. Develop, test, and improve charge capture, accounting, and other financial systems to track resources and ensure adequate and timely reimbursement.
Related concepts from health care performance measurement

- **Safe**: Avoid errors and injuries from care that is intended to help
- **Effective**: Match care to evidence; avoid overuse of ineffective care and underuse of effective care
- **Patient-Centered**: Honor and engage the individual and respect choice
- **Timely**: Deliver care at the right time for optimal effectiveness
- **Efficient**: Reduce waste
- **Equitable**: Close racial and ethnic gaps in receipt of care

Institute of Medicine 2001
Applying concepts to public health preparedness

To what extent does the PH system:

- Do the “right” things
 - Effective, evidence-based practices
 - Community-centered, culturally competent
 - Safety – for communities and responders

- For the “right” people
 - Reach to the population at risk
 - Equity in who is reached

- At the “right” times
 - Structures, plans, staff, exercises in place pre-event
 - Timely response during event
 - Recovery, evaluation, QI after event

- At an “acceptable” cost (efficiency)
 - Direct financial cost
 - Opportunity cost – what else gets discontinued or delayed
Applying concepts to public health preparedness

Figure 2.1
Public Health Emergency Decisionmaking as a Production Flow

II. Measurement Approaches
 Prospective
 Concurrent
 Retrospective
Measuring preparedness prospectively

A Review of Instruments Assessing Public Health Preparedness

<table>
<thead>
<tr>
<th>Essential Public Health Service</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 Monitor health problems to identify and solve community health problems</td>
<td></td>
</tr>
<tr>
<td>Disease reporting: complete</td>
<td></td>
</tr>
<tr>
<td>Timely</td>
<td></td>
</tr>
<tr>
<td>Compliance</td>
<td></td>
</tr>
<tr>
<td>Syndromic surveillance</td>
<td></td>
</tr>
<tr>
<td>Capacity to receive/analyze data</td>
<td></td>
</tr>
<tr>
<td>Facility hazard assessment</td>
<td></td>
</tr>
<tr>
<td>#2 Diagnose and investigate health problems and health hazards in the community</td>
<td></td>
</tr>
<tr>
<td>Information system capacity:</td>
<td></td>
</tr>
<tr>
<td>Health alert network</td>
<td></td>
</tr>
<tr>
<td>24-hour/7-day capacity</td>
<td></td>
</tr>
<tr>
<td>Active surveillance</td>
<td></td>
</tr>
<tr>
<td>Epidemiologic capacity</td>
<td></td>
</tr>
<tr>
<td>Laboratory capacity</td>
<td></td>
</tr>
<tr>
<td>#3 Inform, educate, and empower people about health issues</td>
<td></td>
</tr>
<tr>
<td>Reports on community health</td>
<td></td>
</tr>
<tr>
<td>Information Officer</td>
<td></td>
</tr>
<tr>
<td>Contact list</td>
<td></td>
</tr>
<tr>
<td>Preprinted materials</td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td></td>
</tr>
<tr>
<td>Risk communication protocol</td>
<td></td>
</tr>
</tbody>
</table>
Measuring preparedness prospectively

Public Health Emergency Preparedness at the Local Level: Results of a National

<table>
<thead>
<tr>
<th>Variable (n)</th>
<th>Population Size (n)</th>
<th>p Value</th>
<th>Presence of a Board of Health (n)</th>
<th>Participation in Coalitions (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(4) ≥ 200,000</td>
<td></td>
<td>Proportions</td>
<td>Proportions</td>
</tr>
<tr>
<td>EP Staff (n = 1,794)</td>
<td><.0001</td>
<td></td>
<td>Yes 9.4% (131)</td>
<td>Yes 17.7% (40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No 15.7% (64)</td>
<td>No 16.8% (20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORs (95% CI)</td>
<td>ORs (95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Univariate: 0.56 (0.42, 0.75)</td>
<td>Univariate: 1.06 (0.60, 1.88)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adjusted: 0.76 (0.54, 1.08)</td>
<td>Adjusted: 0.80 (0.46, 1.74)</td>
</tr>
<tr>
<td>EP Capacities (n = 2,255)</td>
<td><.0001</td>
<td></td>
<td>Yes 19.0% (326)</td>
<td>Yes 27.8% (73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No 19.9% (106)</td>
<td>No 19.1% (30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORs (95% CI)</td>
<td>ORs (95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Univariate: 0.94 (0.74, 1.20)</td>
<td>Univariate: 1.63 (0.98, 2.72)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adjusted: 1.05 (0.81, 1.34)</td>
<td>Adjusted: 1.46 (0.86, 2.47)</td>
</tr>
<tr>
<td>EP Activities (n = 2,292)</td>
<td><.0001</td>
<td></td>
<td>Yes 73.3% (1,279)</td>
<td>Yes 85.8% (227)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No 61.5% (337)</td>
<td>No 53.9% (85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORs (95% CI)</td>
<td>ORs (95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Univariate: 1.17 (1.37, 2.13)</td>
<td>Univariate: 5.19 (3.03, 8.87)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adjusted: 1.86 (1.48, 2.36)</td>
<td>Adjusted: 5.03 (2.85, 8.90)</td>
</tr>
<tr>
<td>EP Performance (n = 423)</td>
<td><.0001</td>
<td></td>
<td>Yes 40.3% (130)</td>
<td>Yes 59.4% (157)</td>
</tr>
</tbody>
</table>

Savoia E, Rodday AM, Stoto MA. Health Services Research 2009
Some new work in progress through CDC’s NC-PERRC

- Validation of a new instrument for studying variation in preparedness capacities across communities and over time
- Draws on best-performing items from existing instruments
- Testing multiple respondents within the agency and community
- Validation: Summer-Fall 2009
- First wave of implementation: Spring 2010
Measuring preparedness concurrently

Local Variation In Public Health Preparedness: Lessons From California

Even in California—one of the best-prepared states—much work remains to ensure preparedness for a public health emergency.

by Nicole Lurie, Jeffrey Wasserman, Michael Stoto, Sarah Myers, Poki Namkung, Jonathan Fielding, and Robert Burclaga Valdez

EXHIBIT 1

Characteristics Of Local Public Health Agencies (LPHAs) Participating In Test Of Response To Case Reports, 2004

<table>
<thead>
<tr>
<th>LPHA</th>
<th>Region</th>
<th>Population served</th>
<th>Urban/rural</th>
<th>Mean time until calls returned (minutes)</th>
<th>Longest period before calls returned (minutes)</th>
<th>Number of calls not returned</th>
<th>Percent “warm transfers”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Midwest</td>
<td>Small</td>
<td>Rural</td>
<td>93</td>
<td>630</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>Midwest</td>
<td>Medium</td>
<td>Rural</td>
<td>51</td>
<td>350</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>Midwest</td>
<td>Medium</td>
<td>Urban</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>Midwest</td>
<td>Large</td>
<td>Urban</td>
<td>14</td>
<td>30</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Midwest</td>
<td>Large</td>
<td>Urban</td>
<td>10</td>
<td>23</td>
<td>0</td>
<td>38</td>
</tr>
</tbody>
</table>
Measuring preparedness retrospectively

- Existing information flows and documentation
 - Health Alert Network
 - Case reports
 - Electronic disease reporting systems

- Facilitated Look-backs

- After-action Report (AAR) reviews
Measuring preparedness retrospectively
Performance Indicators for Response to Selected Infectious Disease Outbreaks: A Review of the Published Record

Margaret A. Potter, Patricia Sweeney, Angela D. Iuliano, and Michael P. Allswede

Figure 1: Percentage of Outbreak Reports (N = 59) Including Process Indicators by Calendar Date, by Elapsed Time, or Without Date Information

Measuring preparedness retrospectively

Facilitated Look Backs

A New Quality Improvement Tool for Management of Routine Annual and Pandemic Influenza

Julia E. Aledort, Nicole Lurie, Karen Ricci, David J. Dausey, Stefanie Stern

Prepared for the U.S. Department of Health and Human Services

Center for Domestic International Health
A RAND Health Program

 RAND 2006
Measuring preparedness retrospectively

AAR Review

- Types of drills and exercises used
- Range of participating organizations
- Target capabilities and response activities tested
- Roles of public health agencies
- Types of recommendations and improvement plans
III. Analytical Considerations (Comparisons & Inferences)
Analytical Considerations

- How to make meaningful comparisons across agencies and systems
 - Variation across settings
 - Change over time
- How to make valid inferences about Context-Mechanism-Outcome relationships
Challenge #1: heterogeneity in context

Demand-side:
- Nature and timing of the event
- Population health risks, vulnerabilities, social determinants
- Preferences, values, priorities
- Information

Supply-side
- Institutional & interorganizational structures
- Human capital
- Financing
- Law
Example: variation in local public health agency spending

Gini = 0.472

Fraction of Agencies

Gini = 0.472

Expenditures per capita, 2005

$0 $50 $100 $150 $200
Example: classifying systems into homogenous groups for comparison

Results from Hierarchical Cluster Analysis

- Cluster 1: Differentiation: High, Integration: High, Centrality: Mod
 - Comprehensive

- Cluster 2: Differentiation: High, Integration: High, Centrality: Low
 - Conventional

- Cluster 3: Differentiation: High, Integration: Low, Centrality: High
 - Comprehensive

- Cluster 4: Differentiation: Mod, Integration: Mod, Centrality: High
 - Limited

- Cluster 5: Differentiation: Mod, Integration: Mod, Centrality: Low
 - Comprehensive

- Cluster 6: Differentiation: Low, Integration: Low, Centrality: High
 - Conventional

- Cluster 7: Differentiation: Low, Integration: Mod, Centrality: Low
 - Limited
Regression-adjusted means control for population size, density, age composition, poverty status, racial composition, and physician supply.

Example: comparing self-rated practice effectiveness

- **Comprehensive**
- **Conventional**
- **Limited**
Fixed-effects Differences (Reference: Clusters 1-2)

- Conventional and limited systems have significantly higher mortality rates than that of comprehensive systems.

- Differences persist after controlling for population demographics, SES, health resources, and community fixed effects.

Example: Comparing health status

Infant Deaths/1000 Births

<table>
<thead>
<tr>
<th>Cluster 3</th>
<th>Clusters 4-5</th>
<th>Cluster 6</th>
<th>Cluster 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Infectious Disease Deaths/100,000

<table>
<thead>
<tr>
<th>Cluster 3</th>
<th>Clusters 4-5</th>
<th>Cluster 6</th>
<th>Cluster 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>4.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Influenza Deaths/100,000

<table>
<thead>
<tr>
<th>Cluster 3</th>
<th>Clusters 4-5</th>
<th>Cluster 6</th>
<th>Cluster 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
</tbody>
</table>
Example: constructing peer groups using Euclidean distance

- Identify “nearest neighbor” systems based on institutional and community characteristics
- Population size, density, racial/ethnic composition, SES, state/local division of authority

![Figure 1: Proportion of Public Health Activities Available in the Jurisdiction](image)
Challenge #2: heterogeneity in mechanisms

- Variations in practice
- Adoption of evidence-based programs and policies
- Fidelity in implementation & enforcement
- Reach to populations at risk
- Timeliness of response
Example: variations in investigation practice

Mixed Results In Tracking Food Scares

Minnesota health officials investigate all reports of food-borne illness, but officials in many states do not. From 1990 to 2006, Minnesota reported 548 outbreaks, while Kentucky reported 18.

Reported outbreaks of food-related illness
Per 100,000 people, 1990 to 2006

Source: Centers for Disease Control and Prevention
Example: variations in policy design, implementation, enforcement

Estimated Effects of Smoke-free Policies on AMI admissions

<table>
<thead>
<tr>
<th>Study ID</th>
<th>ES (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helena Montana</td>
<td>0.60 (0.21, 0.99)</td>
<td>1.76</td>
</tr>
<tr>
<td>Pueblo Colorado</td>
<td>0.73 (0.63, 0.85)</td>
<td>10.13</td>
</tr>
<tr>
<td>Piedmont Italy</td>
<td>0.89 (0.81, 0.98)</td>
<td>12.14</td>
</tr>
<tr>
<td>Bowling Green Ohio</td>
<td>0.61 (0.55, 0.67)</td>
<td>14.24</td>
</tr>
<tr>
<td>New York State</td>
<td>0.80 (0.80, 0.80)</td>
<td>17.20</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.89 (0.81, 0.97)</td>
<td>12.56</td>
</tr>
<tr>
<td>Saskatoon Canada</td>
<td>0.87 (0.84, 0.90)</td>
<td>16.35</td>
</tr>
<tr>
<td>Rome Italy</td>
<td>0.89 (0.85, 0.93)</td>
<td>15.61</td>
</tr>
<tr>
<td>Overall</td>
<td>0.81 (0.76, 0.86)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis

Glantz 2008
Analytic strategies for addressing heterogeneity in mechanisms

- Analyze the adoption & implementation processes
 - Extent of implementation
 - Degree of fidelity
 - Success in reaching target population (underuse, overuse, misuse)
 - Barriers and facilitators

- Structure comparisons around the type and/or extent of implementation

- Compare different approaches to implementation
Challenge #3: identifying appropriate outcomes

Problems
- Lagged effects
- Partial effects on multiple outcomes
- Heterogeneous effects on outcomes

Analytic strategies
- Composite outcome measures
- Latent variable analysis
- Process measures with empirical link to outcomes
Challenge #4: untangling the effects of context and mechanisms

- Contextual confounding
- Selection/endogeneity bias in mechanisms
- Interactions between context and mechanisms
- Interaction between multiple mechanisms
 - Economies of scope
 - Synergy
 - Competing/offsetting effects
- Highly correlated/indistinguishable mechanisms
Research design & analytical considerations

- Take advantage of natural experiments (exogenous change in context or mechanisms)
- Use statistical controls for observed and/or unobserved confounding
 - Propensity score methods
 - Instrumental variables methods
- Test for interaction effects between contexts and mechanisms
- Test “standardized” mechanisms in different institutional & community settings
Example: effects of accreditation on preparedness & performance

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre-accreditation</th>
<th>Post-accreditation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early NC agencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late NC agencies</td>
<td>O_{pre}</td>
<td>O_{post}</td>
</tr>
<tr>
<td>Propensity-matched comparison agencies</td>
<td>C_{pre}</td>
<td>C_{post}</td>
</tr>
<tr>
<td>outside NC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effect = $(O_{\text{post}} - O_{\text{pre}}) - (C_{\text{post}} - C_{\text{pre}})$
Practice-based research networks as vehicles for comparative studies

- Compare a standardized intervention in a variety of practice settings
- Compare variation in adoption and implementation across a variety of practice settings
- Examine multiple context-mechanism pathways that lead to outcomes of interest
Concluding thoughts

- PH system and services heterogeneity poses challenges to comparative research

- This heterogeneity also drives the need for comparative research – is the variation:
 - Wasteful
 - Harmful
 - Inequitable

- Threats to validity must be balanced against:
 - the consequences of error (type I)
 - the consequences of inaction (type II)