Tamar Klaiman (presenter), University of the Science; Athena Pantazis, University of Washington; Anjali Chainani, University of the Sciences; Betty Bekemeier, University of Washington
Identifying Positive Deviant Local Health Departments in Maternal and Child Health
Oral Presentation
Keeneland Conference for Public Health Systems and Services Research
Lexington, KY
April 21, 2015
Identifying Positive Deviant Local Health Departments in Maternal and Child Health

Tamar Klaiman, PhD, MPH; Athena Pantazis, MPH; Anjali Chainani, MPH; Betty Bekemeier, PhD, MPH, FAAN
Acknowledgement

• Funding provided by the Robert Wood Johnson Foundation *Public Health Services and Systems Mentored Research Award*
Research Objective

To identify and learn from LHD jurisdictions that perform better than expected in MCH outcomes compared to peers.
Framework: Positive Deviance

- Used to identify and learn from units that perform beyond expectations
- Defined by context
- Performance Improvement
Step 1:
Identify “positive deviants”, i.e., organizations that consistently demonstrate exceptionally high performance in an area of interest.

Step 2:
Study organizations in-depth using qualitative methods to generate hypotheses about practices that allow organizations to achieve top performance.

Step 3:
Test hypotheses statistically in larger, representative samples of organizations.

Step 4:
Work in partnership with key stakeholders, including potential adopters, to disseminate the evidence about newly characterized best practices.
Framework: Realist Evaluation (Pawson and Tilley)

Context: LHD environment (budget, population, geography)

Mechanisms: leadership, partnerships, service provisions

Outcomes:
- Teen pregnancy rates
- Low birth weight
- Pre-natal care
- Infant mortality rate

\[C + M = O \]
Methods

• 2009-2010 Public Health Activities and Services Tracking (PHAST) data
 - WA (n=35), FL (n=67), NY [n=48 (excluded NYC and 9 additional LHDs)] uniquely detailed and matched annual MCH-related county-level expenditure data
C+M=O Variables

Context (Z) = those over which LHDs have no control
- population size
- geography
- budgets

Mechanisms (X) = Variables over which LHD leaders and boards have some internal control (X)
- assuring service through alternative providers in the community
- having a clinician as an LHDs “top executive”
- the types of services the LHD provides

Outcomes (Y)
- county-level rates of teen births
- late or no prenatal care
- infant mortality
- percent of low weight births
Methods: Quantitative

• **Step 1:** We regressed $y=\alpha + \beta_1 (Z) + e$ to identify high performers in each outcome taking into account local contextual factors.

• **Step 2:** We added in X variables $Y=a+b1(Z) + b2(X)+e$ to assess how well the model fit when including LHD-controlled variables.

• **Step 3:** Likelihood ratio test to evaluate whether the inclusion of mechanism additional variables improved model fit.

Positive Deviant Identification Regression Results

<table>
<thead>
<tr>
<th>State</th>
<th>Model Outcomes</th>
<th>R²</th>
<th>Likehood Ratio Test p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Step 1</td>
<td>Step 2</td>
</tr>
<tr>
<td>Florida</td>
<td>Teen pregnancy rate</td>
<td>0.65</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>Infant Mortality rate</td>
<td>0.23</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Late or no prenatal care rate</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Low birth weight rate</td>
<td>0.45</td>
<td>0.52</td>
</tr>
<tr>
<td>New York</td>
<td>Teen pregnancy rate</td>
<td>0.50</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Infant Mortality rate</td>
<td>0.32</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Late or no prenatal care rate</td>
<td>0.55</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Low birth weight rate</td>
<td>0.28</td>
<td>0.39</td>
</tr>
<tr>
<td>Washington</td>
<td>Teen pregnancy rate</td>
<td>0.82</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>Infant Mortality rate</td>
<td>0.22</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Late or no prenatal care rate</td>
<td>0.33</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Low birth weight rate</td>
<td>0.30</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Results

- 50 positive deviant LHDs across 3 states:
 - WA = 10 (29%)
 - FL = 24 (36%)
 - NY = 16 (33%)

- 45 of 50 LHDs (90%) had better than expected MCH outcomes over 2 years,

- 25 LHDs (50%) had 2 or more exceptional outcomes in a single study year
Results: MCH Expenditures – PDs and non-PDs

<table>
<thead>
<tr>
<th>State</th>
<th>LHDs</th>
<th>PDs (%)</th>
<th>Total Maternal Child Health Expenditures*</th>
<th>WIC Expenditures</th>
<th>Family Planning Expenditures</th>
<th>Maternal, Infant, Child and Adolescent Health Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>non-PDs</td>
<td>PDs</td>
<td>non-PDs</td>
<td>PDs</td>
</tr>
<tr>
<td>FL</td>
<td>Rural</td>
<td>18 (27%)</td>
<td>7 (29%)</td>
<td>$5.78-35.67 (19.68)</td>
<td>$7.64-33.26 (22.71)</td>
<td>$0.21-21.20 (1.91)</td>
</tr>
<tr>
<td></td>
<td>Micro</td>
<td>10 (15%)</td>
<td>2 (8%)</td>
<td>$8.56-46.36 (20.80)</td>
<td>$28.05-36.26 (32.98)</td>
<td>$0.02-11.45 (4.80)</td>
</tr>
<tr>
<td></td>
<td>Metro</td>
<td>39 (58%)</td>
<td>15 (63%)</td>
<td>$7.26-27.69 (15.49)</td>
<td>$7.49-56.38 (16.93)</td>
<td>$0.11-15.01 (5.15)</td>
</tr>
<tr>
<td>NY</td>
<td>Rural</td>
<td>9 (19%)</td>
<td>4 (25%)</td>
<td>$0.25-14.06 (5.77)</td>
<td>$1.18-16.61 (7.94)</td>
<td>$0.87-0.76 (2.42)</td>
</tr>
<tr>
<td></td>
<td>Micro</td>
<td>13 (27%)</td>
<td>5 (31%)</td>
<td>$0.30-12.90 (2.56)</td>
<td>$1.38-20.55 (9.92)</td>
<td>$0.12-10.12 (3.28)</td>
</tr>
<tr>
<td></td>
<td>Metro</td>
<td>26 (54%)</td>
<td>7 (44%)</td>
<td>$0.02-13.70 (4.81)</td>
<td>$1.07-20.39 (7.50)</td>
<td>$0.07-0.77 (3.11)</td>
</tr>
<tr>
<td>WA</td>
<td>Rural</td>
<td>11 (31%)</td>
<td>3 (30%)</td>
<td>$3.44-32.20 (15.16)</td>
<td>$17.17-25.95 (21.22)</td>
<td>$0.86-8.76 (3.84)</td>
</tr>
<tr>
<td></td>
<td>Micro</td>
<td>11 (31%)</td>
<td>3 (30%)</td>
<td>$1.21-9.40 (5.77)</td>
<td>$2.36-6.21 (4.48)</td>
<td>$0.53-3.43 (2.90)</td>
</tr>
<tr>
<td></td>
<td>Metro</td>
<td>13 (37%)</td>
<td>4 (40%)</td>
<td>$0.82-27.52 (9.30)</td>
<td>$0.73-11.71 (7.32)</td>
<td>$0.47-0.49 (2.76)</td>
</tr>
<tr>
<td>Combined</td>
<td>Rural</td>
<td>38 (25%)</td>
<td>14 (28%)</td>
<td>$0.25-35.67 (15.44)</td>
<td>$1.18 - 33.21 (17.68)</td>
<td>$0.21-21.20 (2.56)</td>
</tr>
<tr>
<td></td>
<td>Micro</td>
<td>34 (23%)</td>
<td>10 (20%)</td>
<td>$0.30-46.36 (9.72)</td>
<td>$1.38 - 35.26 (13.05)</td>
<td>$0.11-11.45 (3.00)</td>
</tr>
<tr>
<td></td>
<td>Metro</td>
<td>78 (52%)</td>
<td>26 (52%)</td>
<td>$0.17-27.69 (10.50)</td>
<td>$0.73 - 56.37 (13.00)</td>
<td>$0.11-15.01 (3.64)</td>
</tr>
</tbody>
</table>
Next Steps

• Positive deviance can be used to ID high performers
• Mechanisms matter, but it is not clear how
• Conducting in-depth analysis to identify the *mechanisms* that lead to exceptional outcomes
Thank you!

- Robert Wood Johnson Foundation
- Research Assistants
 - Anjali Chainani, MPH, MSW & Athena Pantazis, MA, MPH
- Interviewees
- Advisory Council
 - Betty Bekemeier, PhD, MPH, FAAN
 - Barry Kling, MSPH
 - Michael Stoto, PhD
 - JoAnne Fischer
 - Carol Brady
Questions??